Abstract

Endothelin 1 (ET-1), a potent vasoconstrictor, pro-mitogenic and pro-inflammatory peptide, may promote development of endothelial dysfunction and arterial remodeling. ET-1 can be formed through cleavage of big-ET-1 by endothelin-converting enzyme (ECE) or neutral endopeptidase (NEP). We investigated whether chronic treatment with the novel dual NEP/ECE inhibitor SOL1 improves functional and structural properties of resistance-sized arteries of 32-week-old male spontaneously hypertensive rats (SHR). SHR received a chronic 4-week treatment with SOL1, losartan or hydralazine. We then compared effects of inhibition of NO synthase (NOS) (100 μM l-NAME), blockade of ETA- and ETB-receptors (10 μM bosentan) and stimulation of the endothelium with 0.001-10 μM acetylcholine (ACh) in isolated third-order mesenteric resistance arteries. Losartan and hydralazine significantly lowered blood pressure. Losartan decreased the media-to-lumen ratio of resistance arteries. l-NAME (1) increased arterial contractile responses to K+ (5.9-40 mM) in the losartan, SOL1 and vehicle group and (2) increased the sensitivity to phenylephrine (PHE; 0.16-20 μM) in the SOL1 group but not in the losartan, hydralazine and vehicle group. Relaxing responses to ACh in the absence or presence of l-NAME during contractions induced by either 10 μM PHE or 40 mM K+ were not altered by any in vivo treatment. Acute treatment with bosentan did, however, significantly improve maximal relaxing responses involving endothelium-derived nitric oxide and -hyperpolarizing factors in the SOL1 group but not in the losartan, hydralazine or vehicle group. Thus, chronic inhibition of NEP/ECE improved basal endothelial function but did not alter blood pressure, resistance artery structure and stimulated endothelium-dependent relaxing responses in 32-week-old SHR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.