Abstract
Effector translocation is central to the virulence of many bacterial pathogens, including Streptococcus pyogenes, which utilizes the cholesterol-dependent cytolysin Streptolysin O (SLO) to translocate the NAD(+) glycohydrolase SPN into host cells during infection. SLO's translocation activity does not require host cell membrane cholesterol or pore formation by SLO, yet SLO does form pores during infection via a cholesterol-dependent mechanism. Although cholesterol was considered the primary receptor for SLO, SLO's membrane-binding domain also encodes a putative carbohydrate-binding site, implicating a potential glycan receptor in binding and pore formation. Analysis of carbohydrate-binding site SLO mutants and carbohydrate-defective cell lines revealed that glycan recognition is involved in SLO's pore formation pathway and is an essential step when SLO is secreted by non-adherent bacteria, as occurs during lysis of erythrocytes. However, SLO also recognizes host cell membranes via a second mechanism when secreted from adherent bacteria, which requires co-secretion of SPN but not glycan binding by SLO. This SPN-mediated membrane binding of SLO correlates with SPN translocation, and requires SPN's non-enzymatic domain, which is predicted to adopt the structure of a carbohydrate-binding module. SPN-dependent membrane binding also promotes pore formation by SLO, demonstrating that pore formation can occur by distinct pathways during infection.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have