Abstract

As an important component of wearable and stretchable strain sensors, dual-mode strain sensors can respond to deformation via optical/electrical dual-signal changes, which have important applications in human motion monitoring. However, realizing a fiber-shaped dual-mode strain sensor that can work stably in real life remains a challenge. Here, we design an interactive dual-mode fiber strain sensor with both mechanochromic and mechanoelectrical functions that can be applied to a variety of different environments. The dual-mode fiber is produced by coating a transparent elastic conductive layer onto photonic fiber composed of silica particles and elastic rubber. The sensor has visualized dynamic color change, a large strain range (0-80%), and a high sensitivity (1.90). Compared to other dual-mode strain sensors based on the photonic elastomer, our sensor exhibits a significant advantage in strain range. Most importantly, it can achieve reversible and stable optical/electrical dual-signal outputs in response to strain under various environmental conditions. As a wearable portable device, the dual-mode fiber strain sensor can be used for real-time monitoring of human motion, realizing the direct interaction between users and devices, and is expected to be used in fields such as smart wearable, human-machine interactions, and health monitoring.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call