Abstract
Currently, the determination of DNA methylation is still a challenge due to the limited efficiency of enrichment, bisulfite modification, and detection. In this study, a dual-modality loop-mediated isothermal amplification integrated with magnetic bead isolation is proposed for the determination of methylated Septin9 gene in colorectal cancer. Magnetic beads modified with anti-methyl cytosine antibody were prepared for fast enrichment of methylated DNA through specific immunoaffinity (30 min). One-pot real-time fluorescence and colorimetric loop-mediated isothermal amplification were simultaneously developed for detecting methylated Septin9 gene (60 min). The real-time fluorescence generating by SYTO-9 dye (excitation: 470 nm and emission: 525 nm) and pH indicator (neutral red) was used for quantitative and visualized detection of methylated DNA. This method was demonstrated to detect methylated DNA from HCT 116 cells ranging from 2 to 0.02 ng/μL with a limit of detection of 0.02 ± 0.002 ng/μL (RSD: 9.75%). This method also could discriminate methylated Septin9 in 0.1% HCT 116 cells (RSD: 6.60%), suggesting its high specificity and sensitivity. The feasibility of this assay was further evaluated by clinical plasma samples from 20 colorectal cancer patients and 20 healthy controls, which shows the potential application in simple, low cost, quantitative, and visualized detection of methylated nucleic acids.Graphical abstract A dual-modality loop-mediated isothermal amplification (LAMP) integrated with immuno-magnetic beads (IMB) enrichment was proposed for the determination of methylated Septin9 gene in colorectal cancer (CRC).Supplementary InformationThe online version contains supplementary material available at 10.1007/s00604-021-04979-8.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.