Abstract

A dual microcolumn immunoassay (DMIA) was developed and applied to determination of insulin in biological samples. The DMIA utilized a protein G capillary column (150 microns I.D.) with covalently attached anti-insulin to selectively capture and concentrate insulins in a sample. Insulins retained in the capillary immunoaffinity column were desorbed and injected onto a reversed-phase capillary column (150 microns I.D.) for further separation from interferences such as cross-reactive antigens and non-specifically adsorbed sample components. Bovine, porcine and rat insulin all cross-reacted with the antibody and could be determined simultaneously. Using a UV absorbance detector, the dual microcolumn system had a detection limit of 10 fmol or 20 pM for 500-microliter sample volumes. The DMIA system was used to measure glucose-stimulated insulin secretion from single rat islets of Langerhans. Because of the separation in the second dimension, both rat I and rat II insulin could be independently determined. The system was also evaluated for determination of insulin in serum. Using microcolumns instead of conventional HPLC columns resulted in several advantages including use of less chromatographic material and improved mass detection limit.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call