Abstract

The inevitability of energy inconsistency among batteries within a battery pack poses operational challenges and potential safety hazards. It is imperative to swiftly harmonize the state of charge across all batteries to mitigate these issues. Addressing this concern, a dual-layer hybrid equalization topology is introduced, leveraging the Cuk circuit and flyback transformer. The battery pack is segmented into modules, with the Cuk circuit employed for intra-module equalization. Subsequently, the flyback transformer facilitates inter-module equalization. A multimodal equalization control strategy is devised, considering the status of individual modules to minimize repeated energy transfers between batteries. Simulation and experimental findings affirm that the proposed dual-layer active equalization control markedly mitigates the inconsistency among series-connected batteries, demonstrating rapid equalization and heightened efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.