Abstract
Cervical cancer is one of the most common gynecological malignancies, with the vast majority of which being caused by persistent infection with Human Papillomavirus (HPV) 16 and 18. The current available HPV detection methods are sensitive and genotyped but are restricted by expensive instruments and skilled personnel. The development of an easy-to-use, rapid, and cost-friendly analysis method for HPV is of great need. Herein, hollow palladium-ruthenium nanocages modified with two oligonucleotides (PdRu capture probes) were constructed for genotyping and simultaneous detection of target nucleic acids HPV16 and HPV18 by dual lateral flow assay (DLFA). PdRu capture probes were endowed with bi-functions for the first time, which could be used to output signals and hybridize target nucleic acids. Under optimized conditions, the PdRu based-DLFA with detection limits of 0.93 nM and 0.19 nM, respectively, exhibited convenient operation, and high sensitivity. Meanwhile, the DLFA achieved excellent rapid detection within 20 min, which was attributed to capture probes that can be directly bound to amplification-free target nucleic acids. Therefore, the development of PdRu-based DLFA can be utilized for rapid, sensitive, and simultaneous genotyping detection of HPV16 and HPV18, showing great application for nucleic acid detection.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have