Abstract
Nanofluidic iontronics, including the field-effect ionic diode (FE-ID) and field-effect ionic transistor (FE-IT), represent emerging nanofluidic logic devices that have been employed in sensitive analyses. Making analyte recognitions in predefined nanofluidic devices has been verified to improve the sensitivity and selectivity using a single ionic signal, such as ionic current amplification, rectification, and Coulomb blockade. However, the detection of analytes in complex systems generally necessitates more diverse signals beyond just ionic currents. Here, we demonstrated that dual ionic signals, steady ionic switching ratio, and transient response time (ts) act as detection signals modulated by dual-split gate voltages along the nanochannel for the detection of charged analytes. With an increase in gate voltage, the switching ratio decreases in both FE-ID and FE-IT, whereas the response time exhibits an exponential increase specifically in the FE-ID. Moreover, the response time shows no significant correlation with the external transmembrane voltage in the FE-IT. These results contribute to the optimization of reconfigurable iontronics through gate voltage modulation, providing a theoretical foundation for multiple ionic signal detection.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have