Abstract

This work presents a mixed-ligand metal-organic framework (m-MOF) integrated with two ligands, one as a luminophore and the other as a coreactant, on one metal node for self-enhanced electrochemiluminescence (ECL). Both 9,10-di(p-carboxyphenyl)anthracene (DPA) and 1,4-diazabicyclo[2.2.2]octane (D-H2) ligands can be oxidized, generating the cation radicals DPA+• and D-H2+•, respectively. The latter can be deprotonated to form the neutral radical (D-H•) and then react with DPA+• to produce excited DPA* for ECL emission without exogenous coreactants. As a result of the incorporation into the MOF framework and the intrareticular charge transfer between the two ligands, the ECL intensity of the m-MOF was increased 26.5-fold compared with that of the mixture of DPA and D-H2 in aqueous solution. Moreover, with the process of second oxidation of D-H2, stepwise ECL emission was observed as a result of local excitation in the DPA unit, which was identified through density functional theory calculations. Overall, the implementation of the mixed-ligand approach, which combines the luminophore and coreactant as linkers in reticular materials, enriches the fundamentals and applications of ECL systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call