Abstract

AbstractThe development of catalysts with high intrinsic activity towards the oxygen evolution reaction (OER) plays a critical role in sustainable energy conversion and storage. Herein, we report on the development of efficient (photo)electrocatalysts based on functionalized MnO2 systems. Specifically, β‐MnO2 nanostructures grown by plasma enhanced‐chemical vapor deposition on fluorine‐doped tin oxide (FTO) or Ni foams were decorated with Co3O4 or Fe2O3 nanoparticles by radio frequency sputtering. Upon functionalization, FTO‐supported materials yielded a performance increase with respect to bare MnO2, with current densities at 1.65 V vs. the reversible hydrogen electrode (RHE) up to 3.0 and 3.5 mA/cm2 in the dark and under simulated sunlight, respectively. On the other hand, the use of highly porous and conductive Ni foam substrates enabled to maximize cooperative interfacial effects between catalyst components. The best performing Fe2O3/MnO2 system provided a current density of 17.9 mA/cm2 at 1.65 V vs. RHE, an overpotential as low as 390 mV, and a Tafel slope of 69 mV/decade under dark conditions, comparing favorably with IrO2 and RuO2 benchmarks. Overall, the control of β‐MnO2/substrate interactions and the simultaneous surface property engineering pave the way to an efficient energy generation from abundant natural resources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call