Abstract

By considering a single-walled carbon nanotube (SWCNT) as a two-dimensional elastica obtained from the roll-up of a graphene sheet into a circular tube, the present paper develops a precise well-posed continuum theory for describing the entire torsional behavior of SWCNTs from an initial unloaded state through their ultimate levels of loading. In addition, the proposed approach can capture the dual ideal shear strengths as well as the asymmetrical behavior of chiral tubes with respect to the direction of the applied torsional loading. The theory incorporates a highly nonlinear constitutive equation which provides information about the nanoscopic morphological parameters of the tubes. As it will be shown, the longitudinal and twist deformations are coupled. Accordingly, a parameter referred to as the torsion-induced extension will be defined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.