Abstract

Abstract The decline of domestic natural gas production, increasing dependency on gas imports and lagging development of renewable energy production may pose serious challenges to the current high standards of secure energy supply in the Netherlands. This paper examines synergy between hydrocarbon- and geothermal exploitation as a means to reinforce energy security. The Roden gas field is used as an example to demonstrate potential delay of water breakthrough in the gas well and a resulting increase of recovered gas (up to 19%), by positioning of a geothermal doublet in the water leg of the gas field. The reservoir simulations show that the total increase of gas production primarily depends on the amount of aquifer support. An optimal configuration of gas- and geothermal wells is key to maximise gas recovery and strongly depends on the distribution of reservoir properties. The study also reveals that this option can still be beneficial for gas fields in a late stage of production. Net Present Value calculations show that the added value from the geothermal doublet on total gas production could lead to an early repayment of initial investments in the geothermal project, thereby reducing the overall financial risk. If no subsidies are taken into account, the additional profits can also be used to finance the geothermal project up to break-even level within 15 years. However, this comes with a cost as the additional profits from improved gas recovery are significantly reduced.

Highlights

  • The energy system in the Netherlands is subject to substantial changes

  • The geothermal well configuration resulting in the highest cumulative gas production has a geothermal producer at 250 m from the gas–water contact (GWC), the geothermal injector 2000 m from the geothermal producer, and a geothermal flow rate of 250 Sm3 h−1

  • With an increased gas production rate the highest gas recovery increase is shown by the synergy scenario with a geothermal producer at 250 m from the GWC, the geothermal injector 2000 m from the geothermal producer and a geothermal flow rate of 250 Sm3 h−1

Read more

Summary

Introduction

The Dutch Energieagenda (MEA, 2016) targets a 95% reduction of greenhouse gas emissions, compared to the 1990 emissions levels, by 2050. In this respect, the replacement of fossil fuels (coal, gas, oil) by clean and renewable sources (wind, solar, biomass and geothermal) represents one of the key pillars of climate and energy policies. As domestic production of natural gas steadily declines, the fossil-to-renewable transition becomes more urgent. The high investment costs associated with a rapid transition, the disappearing backbone of secure fossil energy production and the measures to balance the high shares of intermittent renewables may form a challenging hurdle to this transition. Synergies between natural gas production and development of renewable production may help to mitigate these issues

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call