Abstract

In this study, the W-doped Nickel oxide (NiO) nanoflowers were synthesized using a straightforward hydrothermal method, significantly enhancing the sensing performance toward triethylamine through dual-functional tungsten doping. The optimal doping concentration not only increased the specific surface area of NiO from 25.54 to 189.19 m2 g-1 but also reduced the formation energy of oxygen vacancies. The sensor containing 4 at % W-doped NiO demonstrated exceptional sensitivity to triethylamine, achieving a detection level as high as 229.0 for concentrations of 100 ppm at 237.5 °C. This triethylamine sensor represents a 135-fold enhancement over sensors fabricated from undoped NiO, and offers a rapid response/recovery time of 8 and 30 s, respectively. Furthermore, at a lower triethylamine concentration of 50 ppb, indicating a lower detection limit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.