Abstract

Nano drug delivery systems can control the ordered release of drugs. To achieve the target of supplying therapeutics and nutrients at the same time, a novel nano drug delivery system with a core–shell structure was prepared by coaxial electrospinning. Polyacrylonitrile (PAN) has been used to produce a drug release scaffold in the shell section, mixed with absorbable silk fibroin peptide (SFP) as a nutrient. Ciprofloxacin (CPFX), a broad-spectrum antibiotic, was used as the core, as well as an antibacterial agent. Owing to its low molecular weight, using a pure SFP thin solution to manufacture nanofibers by electrospinning is still technically challenging. Thus, different ratios of PAN to SFP were used in the shell electrospinning solution. In this research, a novel nano dual-functionality drug delivery system has been successfully prepared. In vitro testing demonstrated that nanofibers could supply more nutrients with increasing SFP in shell solutions; however, the ability to maintain controlled release was reduced. It was found that the nanofiber membrane had the best controlled drug release capability for a PAN-to-SFP mass ratio of 95:5. Overall, most ciprofloxacin was released in the first 12 h, while the release of SFP was constant throughout the first 24 h. Our modeling demonstrated that the release of CPFX and SFP is best described using a first-order kinetic model. The developed drug delivery system is designed to release antimicrobial drugs in a controlled manner and provide absorbable nutrients simultaneously.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call