Abstract

The major goal of this work was to design a new nanoparticle drug delivery system for desoxycholate amphotericin B (D-AMB), based on controlled particle size, looking for the most successful release of the active agents in order to achieve the best site-specific action of the drug at the therapeutically optimal rate and dose regimen. For this, AMB nanoencapsulated in poly(lactic-co-glycolic acid) (PLGA) and dimercaptosuccinic acid (DMSA) nanoparticles (Nano-D-AMB) has been developed, and its efficacy was evaluated in the treatment of experimental cutaneous leishmaniasis in C57BL/6 mice, to test if our nano-drug delivery system could favor the reduction of the dose frequency required to achieve the same therapeutic level of free D-AMB, and so, an extended dosing interval. Magnetic citrate-coated maghemite nanoparticles were added to this nanosystem (Nano-D-AMB-MG) aiming to increase controlled release of AMB by magnetohyperthermia. Female mice (N=6/group) were infected intradermally in the right footpad with promastigotes of Leishmania amazonensis in the metacyclic phase, receiving the following intraperitoneal treatments: 1% PBS for 10 consecutive days; D-AMB at 2mg/kg/day for 10days (totalizing 20mg/kg/animal); Nano-D-AMB and Nano-D-AMB-MG at 6mg/kg on the 1st, 4th and 7th days and at 2mg/kg on the 10th day, also totalizing 20mg/kg/animal by treatment end. The Nano-D-AMB-MG group was submitted to an AC magnetic field, allowing the induction of magnetohyperthermia. The evaluations were through paw diameter measurements; parasite number and cell viability were investigated by limiting dilution assay. D-AMB-coated PLGA–DMSA nanoparticles showed the same efficacy as free D-AMB to reduce paw diameter; however, the Nano-D-AMB treatment also promoted a significantly greater reduction in parasite number and cell viability compared with free D-AMB. The nano-drug AMB delivery system appeared more effective than free D-AMB therapy to reduce the dose frequency required to achieve the same therapeutic level. It thus favors a longer interval between doses, as expected with development of a new nano drug delivery system, and may be useful in the treatment of many different pathologies, from cancer to neurodegenerative diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call