Abstract

A new type of resorufin-based dual-functional fluorescent probe whose fluorescence emission features are sensitive to thiol compounds and redox homeostasis was developed. Thiols-triggered nucleophilic substitution of the probes converts the nonfluorescent probe to the highly fluorescent resorufin moiety; the released resorufin not only enables fluorescence signaling specific for thiol compounds but functions as a redox indicator with sensitive colorimetric and fluorescence emission change upon redox variation. Preliminary fluorescence imaging experiments have revealed the biocompatibility of the as-prepared probes and validated their practicability for thiol sensing and redox homeostasis mapping in living cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.