Abstract
The objectives of this study were to incorporate dimethylaminohexadecyl methacrylate (DMAHDM) into resin-modified glass ionomer cement (RMGI) to develop a novel orthodontic cement which endowed RMGI with strong antibacterial ability and investigated its modulation biofilm equilibrium from cariogenic state to non-cariogenic state for the first time. Cariogenic Streptococcus mutans (S. mutans), and non-cariogenic Streptococcus sanguinis (S. sanguinis) and Streptococcus gordonii (S. gordonii) were selected to form a tri-species biofilm model. RMGI incorporated with different mass fraction of DMAHDM was examined: biofilm colony-forming units, metabolic activity, live/dead staining, lactic acid and exopolysaccharides productions. TaqMan real-time polymerase chain reaction was used to determine changes of biofilm species compositions. The results showed RMGI containing 3% DMAHDM achieved strong antibacterial ability and suppressed the cariogenic species in biofilm, modulating biofilm equilibrium from cariogenic state to non-cariogenic state tendency. The novel bioactive cement containing DMAHDM is promising in fixed orthodontic treatments and protecting tooth enamel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.