Abstract

Magnetic nanorobots are emerging players in thrombolytic therapy due to their noninvasive remote actuation and drug loading capabilities. Although the nanorobots with a size under 100 nm are ideal to apply in microvascular systems, the propulsion performance of nanorobots is inevitably compromised due to the limited response to magnetic fields. Here, we demonstrate a nattokinase-loaded magnetic vortex nanorobot (NK-MNR) with an average size around 70 nm and high saturation magnetization for mechanical propelling and thermal responsive thrombolysis under a magnetic field with dual frequencies. The nanorobots are stable in suspension and undergo the magneto-steered assembly into chain-like NK-MNRs, which are regulated to generate magnetic forces to mechanically damage and penetrate the thrombus by the low-frequency rotating magnetic field. Synergistically, enhanced magnetic hyperthermia is triggered by an alternating magnetic field of high frequency, enabling heat-induced NK release and fibrinolysis. In this dual frequency-regulated magnetothrombolysis (fRMT) strategy, nanorobots collaborate under the dual magnetic energy conversion model to achieve the vasculature recanalization rate of 81.0% in thrombotic mice. Overall, the nanorobot with the special magnetic vortex property and multimodel controls is a promising nanoplatform for in vivo focalized microvascular thrombolysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.