Abstract
• DFCS allows sub-millisecond resolution of temporal processes occurring at an electrode surface. • IR transient time constants are directly proportional to the RC cell constant. • Absorption spectra line shape depends on coverage. Attenuated total reflection surface enhanced infrared absorption spectroscopy (ATR-SEIRAS) studies of the potential induced desorption/adsorption of a model organic monolayer is described using a paradigm-challenging dual frequency comb spectrometer. Experimentally measured ATR-SEIRAS transients reveal that both the rates of adsorption and desorption of 4-dimethylaminopyridine (DMAP) are dependent on the ionic strength of the supporting electrolyte. The characteristic time scales of monolayer desorption are found to be directly proportional to the spectroelectrochemical cell time constant indicating that the rate of film dissolution is much faster than the RC charging of the interface. The slow response of the interfacial charging process relative to the kinetics of the film re-organization/desorption processes means that the transient is parametrically linked to the potential dependent DMAP adsorption isotherm. The transients also reveal that the line shape of the molecular IR absorption feature exhibits a temporal dependence. A Lorentzian band is seen at early stages of the desorption transient but increasingly exhibit an anomalous bimodal line-shape at longer times. The development of the anomalous line shape is more pronounced at equivalent times in higher ionic strength electrolytes. Such an effect has been modelled using effective medium theory and is explained by the fact that the fraction of organic layer in the SEIRAS active film influences the observed apparent absorption features. The observation of a coverage dependence on SEIRAS line shapes adds new complexity to previous reports that linked anomalous absorption features exclusively to the metal film morphology and metal volume fraction.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have