Abstract
Randomized measurement protocols such as classical shadows represent powerful resources for quantum technologies, with applications ranging from quantum state characterization and process tomography to machine learning and error mitigation. Recently, the notion of measurement dual frames, in which classical shadows are generalized to dual operators of positive operator-valued measure (POVM) effects, resurfaced in the literature. This brought attention to additional degrees of freedom in the postprocessing stage of randomized measurements that are often neglected by established techniques. In this work, we leverage dual frames to construct improved observable estimators from informationally complete measurement samples. We introduce novel classes of parametrized frame superoperators and optimization-free dual frames based on empirical frequencies, which offer advantages over their canonical counterparts while retaining computational efficiency. Remarkably, this comes at almost no quantum or classical cost, thus rendering dual frame optimization a valuable addition to the randomized measurement toolbox. Published by the American Physical Society 2024
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have