Abstract
This paper firstly works out basic differential equations of piezoelectric materials expressed in terms of potential functions, which are introduced in the very beginning. These equations are primarily solved through Laplace transformation, semi-infinite Fourier sine transformation and cosine transformation. Secondly, dual equations of dynamic cracks problem in 2D piezoelectric materials are established with the help of Fourier reverse transformation and the introduction of boundary conditions. Finally, according to the character of the Bessel function and by making full use of the Abel integral equation and its reverse transform, the dual equations are changed into the second type of Fredholm integral equations. The investigation indicates that the study approach taken is feasible and has potential to be an effective method to do research on issues of this kind.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have