Abstract

A novel dual-energy fast neutron imaging technique is presented using short-pulse laser-driven neutron sources to leverage their inherent adaptive spectral control to enable 3D volume segmentation and reconstruction. Laser-accelerated ion beams incident onto secondary targets create directional, broadband, MeV-class neutrons. Synthetic radiographs are produced of multi-material objects using ion and neutron spectra derived from analytic and numerical models. It is demonstrated that neutron images generated from small changes to the neutron spectra, controlled by altering the initial laser conditions, are sufficient to isolate materials with differing attenuation coefficients. This is first demonstrated using a simplistic combinatorial isolation method and then by employing more advanced reconstruction algorithms to reduce artifacts and generate a segmentation volume of the constituent materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call