Abstract

BackgroundLiver cirrhosis-acute decompensation (LC-AD) has rapid short-term disease progression and difficult early risk stratification. The purpose is to develop and validate a model based on dual-energy CT quantification of extracellular liver volume (ECVIC-liver) for predicting the occurrence of acute-on-chronic liver failure (ACLF) within 90 days in patients with hepatitis B (HBV) LC-AD.MethodsThe retrospective study included patients with HBV LC-AD who underwent dual-energy CT scans of the liver from January 2018 to March 2022 and were randomized to training group (215 patients) and validation group (92 patients). The primary outcome was the need for readmission within 90 days due to ACLF. Based on the training group data, independent risk factors for disease progression in clinical and dual-energy CT parameters were identified and modeled by logistic regression analysis. Based on the training and validation groups data, receiver operating characteristic (ROC) curves, calibration curves, and decision analysis curves (DCA) were used to verify the discrimination, calibration, and clinical validity of the nomogram.ResultsChronic liver failure consortium-acute decompensation score (CLIF-C ADs) (p = 0.008) and ECVIC-liver (p < 0.001) were independent risk factors for ACLF within 90 days. The AUC of the model combined ECVIC-liver and CLIF-C ADs were 0.893 and 0.838 in the training and validation groups, respectively. The calibration curves show good agreement between predicted and actual risks. The DCA indicates that the model has good clinical application.ConclusionThe model combined ECVIC-liver and CLIF-C ADs can early predict the occurrence of ACLF within 90 days in HBV LC-AD patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.