Abstract

Ischemic changes are not visible on non-contrast head CT until several hours after infarction, though deep convolutional neural networks have shown promise in the detection of subtle imaging findings. This study aims to assess if dual-energy CT (DECT) acquisition can improve early infarct visibility for machine learning. The retrospective dataset consisted of 330 DECTs acquired up to 48h prior to confirmation of a DWI positive infarct on MRI between 2016 and 2022. Infarct segmentation maps were generated from the MRI and co-registered to the CT to serve as ground truth for segmentation. A self-configuring 3D nnU-Net was trained for segmentation on (1) standard 120kV mixed-images (2) 190keV virtual monochromatic images and (3) 120kV + 190keV images as dual channel inputs. Algorithm performance was assessed with Dice scores with paired t-tests on a test set. Global aggregate Dice scores were 0.616, 0.645, and 0.665 for standard 120kV images, 190keV, and combined channel inputs respectively. Differences in overall Dice scores were statistically significant with highest performance for combined channel inputs (p < 0.01). Small but statistically significant differences were observed for infarcts between 6 and 12h from last-known-well with higher performance for larger infarcts. Volumetric accuracy trended higher with combined inputs but differences were not statistically significant (p = 0.07). Supplementation of standard head CT images with dual-energy data provides earlier and more accurate segmentation of infarcts for machine learning particularly between 6 and 12h after last-known-well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.