Abstract

The aim of this study was to investigate the mechanisms by which fibroblast growth factor 21 (FGF21) affects hepatic integration of carbohydrate and fat metabolism in Siberian hamsters, a natural model of adiposity. Twelve aged matched adult male Siberian hamsters maintained in their long-day fat state since birth were randomly assigned to one of two treatment groups and were continuously infused with either vehicle (saline; n=6) or recombinant human FGF21 protein (1 mg/kg per day; n=6) for 14 days. FGF21 administration caused a 40% suppression (P<0.05) of hepatic pyruvate dehydrogenase complex (PDC), the rate-limiting step in glucose oxidation, a 34% decrease (P<0.05) in hepatic acetylcarnitine accumulation, an index of reduced PDC flux, a 35% increase (P<0.05) in long-chain acylcarnitine content (an index of flux through β-oxidation) and a 47% reduction (P<0.05) in hepatic lipid content. These effects were underpinned by increased protein abundance of PD kinase-4 (PDK4, a negative regulator of PDC), the phosphorylated (inhibited) form of acetyl-CoA carboxylase (ACC, a negative regulator of delivery of fatty acids into the mitochondria) and the transcriptional co-regulators of energy metabolism peroxisome proliferator activated receptor gamma co-activator alpha (PGC1α) and sirtuin-1. These findings provide novel mechanistic basis to support the notion that FGF21 exerts profound metabolic benefits in the liver by modulating nutrient flux through both carbohydrate (mediated by a PDK4-mediated suppression of PDC activity) and fat (mediated by deactivation of ACC) metabolism, and therefore may be an attractive target for protection from increased hepatic lipid content and insulin resistance that frequently accompany obesity and diabetes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.