Abstract
Multiphase computed tomography (CT) images are widely used for the diagnosis of liver disease. Since each phase has different contrast enhancement (i.e., different domain), the multiphase CT images should be annotated for all phases to perform liver or tumor segmentation, which is a time-consuming and labor-expensive task. In this paper, we propose a dual discriminator-based unsupervised domain adaptation (DD-UDA) for liver segmentation on multiphase CT images without annotations. Our framework consists of three modules: a task-specific generator and two discriminators. We have performed domain adaptation at two levels: one is at the feature level, and the other is at the output level, to improve accuracy by reducing the difference in distributions between the source and target domains. Experimental results using public data (PV phase only) as the source domain and private multiphase CT data as the target domain show the effectiveness of our proposed DD-UDA method. Clinical relevance- This study helps to efficiently and accurately segment the liver on multiphase CT images, which is an important preprocessing step for diagnosis and surgical support. By using the proposed DD-UDA method, the segmentation accuracy has improved from 5%, 8%, and 6% respectively, for all phases of CT images with comparison to those without UDA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.