Abstract

In order to pursue rapid development of the new generation of wireless communication systems and elevate their security and efficiency, this paper proposes a novel scheme for automatic dual determination of modulation types and signal to noise ratios (SNR) for next generations of wireless communication systems, fifth-generation (5G) and beyond. The proposed scheme adopts unique signatures depicted in two-dimensional asynchronously sampled in-phase-quadrature amplitudes' histograms (2D-ASIQHs)-based images and applies the support vector machines (SVMs) tool. Along with the estimation of the instantaneous SNR values over 0-35 dB range, the determination of nine modulation types that belong to different modulation categories i.e., phase-shift keying (Binary-PSK, Quadrature-PSK, and 8-PSK), amplitude-shift keying (2-ASK and 4-ASK) and quadrature-amplitude modulation (4-QAM, 16-QAM, 32-QAM, and 64-QAM) could be achieved by this scheme. The application of this scheme has been simulated using a channel model that is impaired by additive white Gaussian noise (AWGN) and Rayleigh fading, covering a broad range of SNRs of 0-35 dB. The performance of this dual-determination scheme shows high modulation recognition accuracy and low mean SNR estimation error. Therefore, it can be a better alternative for designers of next generation wireless communication systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.