Abstract

Dual-controlled nanoparticles (DCNPs) are synthesized by attaching two different types of molecular machines, light-responsive nanoimpellers and pH-responsive nanovalves, to different regions of mesoporous silica nanoparticles. Nanoimpellers are based on azobenzene derivatives that are tethered to the nanopore interiors, while nanovalves are based on [2]pseudorotaxanes that are tethered to the nanoparticle surfaces. The different molecular machines operate through separate mechanisms to control the release of guest molecules that are loaded into the nanopores. When used in conjunction with one another, a sophisticated controllable release system behaving as an AND logic gate is obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.