Abstract

We present the development and first application of a novel dual-color total internal reflection (TIR) fluorescence system for single-molecule coincidence analysis and fluorescence cross-correlation spectroscopy (FCCS). As a performance analysis, we measured a synthetic DNA-binding assay, demonstrating this dual-color TIR-FCCS approach to be a suitable method for measuring coincidence assays such as biochemical binding, fusion, or signal transduction at solid/liquid interfaces. Due to the very high numerical aperture of the epi-illumination configuration, our setup provides a very high fluorescence collection efficiency resulting in a two- to three-fold increase in molecular brightness compared to conventional confocal FCCS. Further improvements have been achieved through global analysis of the spectroscopic data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.