Abstract

The design of synthetic systems with interrelated reaction sequences that model incipient biological complexity is limited by physicochemical tools that allow the direct monitoring of the individual processes in real-time. To mimic a simple digestion-resorption sequence, the authors have designed compartmentalized liposomal systems that incorporate extra- and intravesicular chemosensing ensembles. The extravesicular reporter pair consists of cucurbit[7]uril and methylene blue to monitor the enzymatic cleavage of short enkephalin-related peptides by thermolysin through a switch-off fluorescence response ("digestion"). Because the substrate is membrane-impermeable, but the dipeptide product is permeable, uptake of the latter into the pre-formed liposomes occurs as a follow-up process. The intravesicular chemosensing ensemble consists of i) cucurbit[8]uril, 2-anilinonaphthalene-6-sulfonic acid, and methyl viologen or ii) cucurbit[7]uril and berberine to monitor the uptake ("resorption") of the enzymatic products through the liposomal membranes by i) a switch-on or ii) a switch-off fluorescence response. The dyes are designed to allow selective optical excitation and read-out of the extra- and intravesicular dyes, which allow for dual-color chemosensing and, therefore, kinetic discrimination of the two sequential reactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.