Abstract
Process monitoring technology can help make the right decisions in manufacturing, but the complexity and scale of modern process industry processes render process monitoring difficult. Existing data-driven process monitoring methods utilize abundant monitoring data that are accumulated in industrial processes, but nonlinearity, high coupling, noise effects, and other problems continuously appear in process industry monitoring data. This study proposes a process monitoring method based on variational autoencoder and long short-term memory techniques. The method reconstructs the monitoring data by learning their distribution and time series characteristics under the controlled state, and then it monitors the state of the manufacturing process in real time by calculating the statistics. Evaluation is conducted using the Tennessee Eastman process case verification and experimental comparison method. Then, the proposed method is compared with the centralized process via principal component analysis and kernel principal component analysis. The results show that the proposed method can more significantly improve the effect of fault detection in distributed system process monitoring compared with the traditional method, and it has a better process monitoring effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transactions of the Institute of Measurement and Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.