Abstract

Superconducting photodetection offers a wide spectral coverage ranging from the microwave to X-ray, and in the short wavelength range, single photon sensitivity can be achieved. However, in the longer wavelength infrared region, the system detection efficiency is low due to the lower internal quantum efficiency and weak optical absorption. Here, we utilized the superconducting metamatieral to enhance the light coupling efficiency and reach nearly perfect absorption at dual color infrared wavelengths. Dual color resonances arise from hybridization of local surface plasmon mode of the metamaterial structure and the Fabry-Perot-like cavity mode of metal (Nb)-dielectric (Si)-metamatieral (NbN) tri-layer structure. We demonstrated that, at the working temperature of 8 K slightly below TC ∼8.8 K, this infrared detector exhibits the peak responsivity of 1.2 × 106V/W and 3.2 × 106V/W at two resonant frequencies 36.6 THz and 104 THz, respectively. The peak responsivity is enhanced about ∼8 and ∼22 times, respectively, compared to that of non-resonant frequency (67 THz). Our work provides a way to harvest infrared light efficiently and hence improve the sensitivity of superconducting photodetectors in multispectral infrared range, which may find promising applications in thermal image and gas sensing etc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.