Abstract

This paper presents a dual classifier handprinted character recognition system that is implemented using Radial Basis Function (RBF) networks. Each classifier in the system extracts a different set of features from the input character and makes its own indpendent classification decision. The features used are the diagonal and partitioned radial projections, and the four-directional edge maps of the mage. The system then combines these decisions before giving a final classification output. Several different methods of desinging the combiner are examined. The proposed system is tested on a database of handprinted alphanumeric characters, and the results are fourd to be very promising.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.