Abstract

Multi-axis actuation robotics systems comprising many joints with a floating base require more stability and safety than fixed robots and thus require more considerations. In this paper, we describe the implementation of a real-time EtherCAT control system for the TOCABI humanoid robot with 33 degrees of freedom (DOFs) is described. The focus is on the development of a high-performing EtherCAT MainDevice, which enables control of the robot’s high DOF at fast communication cycles. We also explore the use of a dual-channel EtherCAT MainDevice as a redundancy mechanism to handle communication disruptions and show that this configuration reduces the burden on the communication network and increases the communication cycle, leading to good real-time performance. To demonstrate the advantages of the system, we examine the performance of the EtherCAT communication and evaluate the impact of RTnet on real-time performance, demonstrating that a high-performing EtherCAT MainDevice having hard real-time capabilities can be established using open-source software. The results of this work demonstrate the potential of using dual channels in EtherCAT MainDevice configurations and utilizing open-source software to implement low-cost EtherCAT MainDevice systems. The paper’s contribution to the field is its indication of developing stable robot systems with high DOF, which require hard real-time capability, even with open-source software.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.