Abstract

Two dual stimuli-activated photosensitizers were developed, in which two or three glutathione (GSH)-responsive 2,4-dinitrobenzenesulfonate (DNBS)-substituted zinc(II) phthalocyanine units were connected via one or two cathepsin B-cleavable Gly-Phe-Leu-Gly peptide linker(s). These dimeric and trimeric phthalocyanines were fully quenched in the native form due to the photoinduced electron transfer to the DNBS substituents and the self-quenching of the phthalocyanine units. In the presence of GSH and cathepsin B, or upon internalization into A549 and HepG2 cancer cells, these probes were activated through the release of free phthalocyanine units. The intracellular fluorescence intensity was increased upon post-incubation with GSH ester or reduced upon pre-treatment with a cathepsin B inhibitor. Upon light irradiation, these photosensitizers became highly cytotoxic with IC50 values of 0.21-0.39 μM. The photocytotoxicity was also dependent on the intracellular GSH and cathepsin B levels. The results showed that these conjugates could serve as smart photosensitizers for targeted photodynamic therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.