Abstract

Hexachlorocyclohexanes (HCHs) are persistent organic contaminants that threaten human health. Microbial reductive dehalogenation is one of the most important attenuation processes in contaminated environments. This study investigated carbon and chlorine isotope fractionation of α- and γ-HCH during the reductive dehalogenation by three anaerobic cultures. The presence of tetrachlorocyclohexene (TeCCH) indicated that reductive dichloroelimination was the first step of bond cleavage. Isotope enrichment factors (εC and εCl) were derived from the transformation of γ-HCH (εC, from -4.0 ± 0.5 to -4.4 ± 0.6 ‰; εCl, from -2.9 ± 0.4 to -3.3 ± 0.4 ‰) and α-HCH (εC, from -2.4 ± 0.2 to -3.0 ± 0.4 ‰; εCl, from -1.4 ± 0.3 to -1.8 ± 0.2 ‰). During α-HCH transformation, no enantioselectivity was observed, and similar εc values were obtained for both enantiomers. The correlation of 13C and 37Cl fractionation (Λ = Δδ13C/Δδ37Cl ≈ εC/εCl) of γ-HCH (from 1.1 ± 0.3 to 1.2 ± 0.1) indicates similar bond cleavage during the reductive dichloroelimination by the three cultures, similar to α-HCH (1.7 ± 0.2 to 2.0 ± 0.3). The different isotope fractionation patterns during reductive dichloroelimination and dehydrochlorination indicates that dual-element stable isotope analysis can potentially be used to evaluate HCH transformation pathways at contaminated field sites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call