Abstract

This article presents a highly selective dual-passband filter based on stepped-impedance-resonator (SIR) and mixed electromagnetic coupling. First, the surface area of the filter is effectively reduced by the triangular topology. Second, four controllable transmission zeros are introduced by source-load coupling feed and mixed electromagnetic, which increases the selectivity of the filter. Third, a perturbation structure is added to independently control the resonance points of each passband. Finally, the improved defect ground structure (DGS) is integrated to obtain wide stopband rejection. The measured S-parameters are well agreement with the simulated results, which show that the center frequencies of the two passbands are 2.4 GHz and 5.2 GHz; and the passband insertion losses are 0.85 dB and 1.6 dB; and the relative bandwidths are 14.6% and 5.7%, respectively. Besides, the structure is with six transmission zeros, and 20 dB suppression for the third harmonic and the fourth harmonic are achieved. Compared with the traditional SIR double-passband filter, this filter has many advantages, such as simple design, small size, small insertion loss, controllable frequency, high selectivity, and high spurious suppression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.