Abstract

High quality factor bandpass filters based on a number of cascaded resonators of dual-resonance mechanism are proposed in the present paper. Each resonator is constructed as two overlapped coplanar waveguide (CPW) resonant structures. The cascaded resonators mediate microwave coupling between two isolated corner-shaped CPW feeders only at the resonant frequencies leading to a bandpass filter of high quality factor. The two resonant frequencies and the separation between them can be fine-tuned by the dimensions of the structure. The effects of the dimensional parameters of the resonator and the feeding CPW regions on the resonant frequencies and the performance of the bandpass filter are investigated. The effect of the loss tangent of the dielectric substrate material on the quality factors at the two resonant frequencies is studied. Three prototypes of the proposed filter are fabricated and experimentally studied for more understanding of the underlying physical principles of operation and for verifying some of the simulation results. The experimental results show good agreement when compared with the corresponding simulation results. It is shown that, at low enough absolute temperature, the proposed structure can operate as superconducting microwave resonator when made from the appropriate materials. Also, it is shown that an optimized design of the proposed bandpass filter, based on superconducting CPWR structure, can achieve quality factors high enough to form a quantum data bus for hybrid architecture of quantum information systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.