Abstract

Micro-expression recognition (MER) is challenging due to the difficulty of capturing the instantaneous and subtle motion changes of micro-expressions (MEs). Early works based on hand-crafted features extracted from prior knowledge showed some promising results, but have recently been replaced by deep learning methods based on the attention mechanism. However, with limited ME sample sizes, features extracted by these methods lack discriminative ME representations, in yet-to-be improved MER performance. This paper proposes the Dual-branch Attention Network (Dual-ATME) for MER to address the problem of ineffective single-scale features representing MEs. Specifically, Dual-ATME consists of two components: Hand-crafted Attention Region Selection (HARS) and Automated Attention Region Selection (AARS). HARS uses prior knowledge to manually extract features from regions of interest (ROIs). Meanwhile, AARS is based on attention mechanisms and extracts hidden information from data automatically. Finally, through similarity comparison and feature fusion, the dual-scale features could be used to learn ME representations effectively. Experiments on spontaneous ME datasets (including CASME II, SAMM, SMIC) and their composite dataset, MEGC2019-CD, showed that Dual-ATME achieves better, or more competitive, performance than the state-of-the-art MER methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.