Abstract
AbstractProximity‐orientation effects (POE) are essential for enzymes, as the spatial arrangement and orientation of catalytic sites strongly influence substrate binding and enhance catalysis. However, nanozymes often face limitations due to weak POE arising from uniform catalytic interfaces. Herein, Co atoms are incorporated into the lattice of Pt‐based nanozymes, exploiting differences in electron configuration and atomic radius between transition metals and noble metals. This integration induced lattice distortion formed new catalytic sites, and restricted the transport path, thereby enhancing the POE. Such transition metal‐doped alloy nanozyme (TANzyme) can be functioned as a self‐cascading nanozyme with artificial catalase‐oxidase activity. Density functional theory calculations demonstrated that the Pt site selectively decomposed H2O2 into H2O and O2, while the Co site specifically adsorbed O2 and conversed into superoxide anions, so an oxygen transfer path to connect dual‐active centers not only increased the POE but also improved catalytic specificity. Additionally, by leveraging the efficient catalytic property of TANzyme, a visual origami‐based sensing strategy is developed for the cascade detection of H2O2, nucleic acids, and marine toxins. This strategy highlighted the pivotal role of POE in enhancing the catalytic specificity of nanozymes, mimicking natural POE in enzymes, and providing a solution to design next‐generation nanozymes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.