Abstract
Future many-core systems need to handle high power density and chip temperature effectively. Some cores in many-core systems need to be turned off or ‘dark’ to manage chip power and thermal density. This phenomenon is also known as the dark silicon problem. This problem prevents many-core systems from utilizing and gaining improved performance from a large number of processing cores. This paper presents a dynamic thermal-aware performance optimization of dark silicon many-core systems (DTaPO) technique for optimizing dark silicon a many-core system performance under temperature constraint. The proposed technique utilizes both task migration and dynamic voltage frequency scaling (DVFS) for optimizing the performance of a many-core system while keeping system temperature in a safe operating limit. Task migration puts hot cores in low-power states and moves tasks to cooler dark cores to aggressively reduce chip temperature while maintaining high overall system performance. To reduce task migration overhead due to cold start, the source core (i.e., active core) keeps its L2 cache content during the initial migration phase. The destination core (i.e., dark core) can access it to reduce the impact of cold start misses. Moreover, the proposed technique limits tasks migration among cores that share the last level cache (LLC). In the case of major thermal violation and no cooler cores being available, DVFS is used to reduce the hot cores temperature gradually by reducing their frequency. Experimental results for different threshold temperatures show that DTaPO can keep the average system temperature below the thermal limit. Affirmatively, the execution time penalty is reduced by up to 18% compared with using only DVFS for all thermal thresholds. Moreover, the average peak temperature is reduced by up to 10.8°C. In addition, the experimental results show that DTaPO improves the system’s performance by up to 80% compared to optimal sprinting patterns (OSP) and reduces the temperature by up to 13.6°C.
Highlights
Moore’s law [1] predicts that the number of transistors on a chip would double every two years, and Dennard scaling [2] predicts that power downscaling is proportional to technology size
80% compared to optimal sprinting patterns (OSP) and reduces the temperature by up to 13.6 ◦ C
This paper proposes a dynamic thermal-aware optimization technique (DTaPO) for dark silicon many-core systems
Summary
Moore’s law [1] predicts that the number of transistors on a chip would double every two years, and Dennard scaling [2] predicts that power downscaling is proportional to technology size. These two laws are the key concepts for increasing processor performance. It becomes difficult to scale down the supply voltage as it nears the threshold voltage. According to ITRS [3], the number of cores in the future many-core systems will increase to hundreds in mobile devices and thousands in servers
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.