Abstract

Human pose estimation is the basis of many downstream tasks, such as motor intervention, behavior understanding, and human-computer interaction. The existing human pose estimation methods rely too much on the similarity of keypoints at the image feature level, which is vulnerable to three problems: object occlusion, keypoints ghost, and neighbor pose interference. We propose a dual-space-driven topology model for the human pose estimation task. Firstly, the model extracts relatively accurate keypoints features through a Transformer-based feature extraction method. Then, the correlation of keypoints in the physical space is introduced to alleviate the error localization problem caused by excessive dependence on the feature-level representation of the model. Finally, through the graph convolutional neural network, the spatial correlation of keypoints and the feature correlation are effectively fused to obtain more accurate human pose estimation results. The experimental results on real datasets also further verify the effectiveness of our proposed model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.