Abstract
Demand-side management (DSM) could realize “peak cutting and valley filling” of power load and improve the stability and efficiency of power system. With the development of information systems, more smart devices are being deployed on the demand side. It has become a challenge for DSM service providers to take full use of the edge computing capacity and demand-side information to improve the accuracy of DSM decision-making, without revealing user privacy. This paper proposes a distributed DSM pricing method for service provider, based on asynchronous advantage actor-critic (A3C) algorithm and long short-term memory (LSTM) network under cloud-edge environment. The on-site utilization of user information is realized through distributed training and centralized decision-making structure of A3C algorithm. The training process is accelerated by LSTM based virtual environment, which greatly reduces the training cost of the algorithm. Case study results shows that the proposed method is able to make pricing decision for DSM service provider under cloud-edge environment. Moreover, through the combination of LSTM based virtual environment and A3C algorithm, the proposed method requires less historical data than other methods and improves the profit of service providers.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have