Abstract
Dsl1p is required for Golgi-endoplasmic reticulum (ER) retrograde transport in yeast. It interacts with the ER resident protein Tip20p and with delta-COP, a subunit of coatomer, the coat complex of COPI vesicles. To test the significance of these interactions, we mapped the different binding sites and created mutant versions of Dsl1p and delta-COP, which are unable to bind directly to each other. Three domains were identified in Dsl1p: a Tip20p binding region within the N-terminal 200 residues, a highly acidic region in the center of Dsl1p containing crucial tryptophan residues that is required for binding to delta-COP and essential for viability, and an evolutionarily well conserved domain at the C terminus. Most importantly, Dsl1p uses the same central acidic domain to interact not only with delta-COP but also with alpha-COP. Strong interaction with alpha-COP requires the presence of comparable amounts of epsilon-COP or beta' -COP. Thus, the binding characteristics of Dsl1p resemble those of many accessory factors of the clathrin coat. They interact with different layers of the vesicle coat by using tandemly arranged sequence motifs, some of which have dual specificity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.