Abstract

Submarine groundwater discharge (SGD) is an important source of nutrients and metals to the coastal ocean, affects coastal ecosystems, and is gaining recognition as a relevant water resource. SGD is usually quantified using geochemical tracers such as radon or radium. However, a few studies have also used dissolved silicon (DSi) as a tracer for SGD, as DSi is usually enriched in groundwater when compared to surface waters. In this study, we discuss the potential of DSi as a tracer in SGD studies based on a literature review and two case studies from contrasting environments. In the first case study, DSi is used to calculate SGD fluxes in a tropical volcanic-carbonate karstic region (southern Java, Indonesia), where SGD is dominated by terrestrial groundwater discharge. The second case study discusses DSi as a tracer for marine SGD (i.e. recirculated seawater) in the tidal flat area of Spiekeroog (southern North Sea), where SGD is dominantly driven by tidal pumping through beach sands. Our results indicate that DSi is a useful tracer for SGD in various lithologies (e.g. karstic, volcanic, complex) to quantify terrestrial and marine SGD fluxes. DSi can also be used to trace groundwater transport processes in the sediment and the coastal aquifer. Care has to be taken that all sources and sinks of DSi are known and can be quantified or neglected. One major limitation is that DSi is used by siliceous phytoplankton and therefore limits its applicability to times of the year when primary production of siliceous phytoplankton is low. In general, DSi is a powerful tracer for SGD in many environments. We recommend that DSi should be used to complement other conventionally used tracers, such as radon or radium, to help account for their own shortcomings.

Highlights

  • Submarine groundwater discharge (SGD) is an important source of nutrients and metals for the coastal ocean (Slomp and Van Cappellen, 2004; Moore, 2010), affects coastal ecosystems (Lecher and Mackey, 2018) and is a relevant and important water resource for coastal communities (Moosdorf and Oehler, 2017)

  • dissolved silicon (DSi) becomes enriched in groundwater due to biogenic silica dissolution and water-rock interactions, and can reach a transient steady-state equilibrium between dissolution and reprecipitation with time

  • Groundwaters and pore waters are usually enriched in DSi when compared to surface waters, which makes DSi a useful tracer for terrestrial and marine SGD

Read more

Summary

Introduction

Submarine groundwater discharge (SGD) is an important source of nutrients and metals for the coastal ocean (Slomp and Van Cappellen, 2004; Moore, 2010), affects coastal ecosystems (Lecher and Mackey, 2018) and is a relevant and important water resource for coastal communities (Moosdorf and Oehler, 2017). Geochemical tracers have widely been applied to calculate SGD fluxes. This requires detailed knowledge of the tracer concentration coupled to potential sources and sinks, its residence time in the coastal water column and its endmember concentration in groundwater. Radium (Ra) and Radon (222Rn) isotopes are commonly used as geochemical tracers for SGD, as both tracers are in general enriched in groundwater by several orders of magnitude compared to surface waters (Swarzenski, 2007; Moore, 2010). Radon (222Rn = 3.83 days) is an inert noble gas that is not partitioned between solid and solution phases like its counterpart Ra. 222Rn measurements are automated (Burnett and Dulaiova, 2003), which facilitates rapid data collection over large spatial areas (Dulaiova et al, 2010) and at stationary timeseries.

Objectives
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call