Abstract
The separation of data ownership and management rights in cloud storage architectures results in losing control over outsourced data, making it challenging to achieve deterministic deletion and verify-deletion results. This predicament precipitates security vulnerabilities that impede the advancement of cloud services. This study proposes a deterministic storage and deletion mechanism for trusted cloud service environments (DSDM-TCSEs). This mechanism establishes a three-layer cloud data interaction framework, adopting blockchain as the communication intermediary layer, and employs techniques such as overwrite key negotiation strategy and CP-ABE encryption to achieve fine-grained storage, deletion control, and deletion result verification of cloud data, effectively isolating the cloud service provider and protecting data privacy. It also proposes an efficient evidence strategy based on a cuckoo filter and data noise vectors for rapid construction and verification. Experimental results show that this method improves the speed of evidence construction and verification by 83% compared to related schemes and saves 5% storage overhead when the number of attributes is large, demonstrating good time and space performance and providing a solid guarantee for achieving deterministic storage and deletion in trusted cloud services.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have