Abstract
Because dental implants contact many different tissues, the implant material must have optimum surface compatibility with the host bone tissue, subepithelial connective tissue, and epithelial tissue. In addition, dental implant surfaces exposed to the oral cavity must remain plaque-free. Such materials can be created under well-controlled conditions by modifying the surfaces of metals that contact those tissues. “Tissue-compatible implants,” which are compatible with all host tissues, must integrate with bone tissue, easily form hemidesmosomes, and prevent bacterial adhesion. This research was aimed at developing such tissue-compatible implants by modifying titanium surfaces using a dry process for closely adhering to the titanium substrate and ensuring good wear resistance. The process includes ion beam dynamic mixing (thin calcium phosphates), ion implantation (Ca+, N+, F+), titania spraying, ion plating (TiN, alumina), and ion beam mixing (Ag, Sn, Zn, Pt) with Ar+. At the bone tissue/implant interface, a thin calcium phosphate coating and rapid heating with infrared radiation were effective in controlling the dissolution without cracking the coating. This thin calcium phosphate coating may directly promote osteogenisis, but it may also enable immobilization of functional proteins or drugs. At the oral fluid/implant interface, an alumina coating and F+ implantation were responsible for inhibiting the adhesion of microbial plaque. In conclusion, dry-process surface modification is useful in controlling the physicochemical nature of surfaces, including the surface energy and the surface electrical charge, and in developing tissue-compatible implants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.