Abstract
Drying of porous media is part of our daily experience, yet this common process is central to many environmental and engineering applications ranging from soil evaporation affecting hydrological water balance and climatic processes, to the drying of food and building materials, and driving plant life through transpiration. Drying rates from porous media may exhibit complex dynamics reflecting internal transport mechanisms and motion of phase change fronts that determine rates of drying and critically affect surface energy partitioning. These interactions and resulting drying dynamics present a challenge to the prediction of drying rates and interplay among mass and energy exchange even for fixed boundary conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.