Abstract
We report a first application of vertical small-angle X-ray scattering to investigate the drying process of a colloidal suspension by overcoming gravity related restrictions. From the observation of the drying behavior of charge-stabilized colloidal silica in situ, we find the solidification of the colloidal particles exhibits an initial ordering, followed by a sudden aggregation when they overcome an electrostatic energy barrier. The aggregation can be driven not only by capillary pressure but also by thermal motion of the particles. The dominating contribution is determined by the magnitude of the energy barrier at the transition, which significantly decreases during drying due to an increased ionic strength.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.