Abstract

This paper investigates and presents the simulation of drying for hygroscopic and nonhygroscopic materials. This present work used a coupled mathematical model of mass, heat and gas transfer that implemented to finite element method in two dimensional and numerically compute using Skyline solver to capture highly nonlinear transient process. Bound water contribution was taken into account in the drying of hygroscopic materials by incorporating constitutive equation of bound water. The results showed drying process can be divided into three periods named constant rate period (CRP), first falling rate period (FRP1) and second falling rate period (FRP2). Capillary action is dominated during CRP before vapour diffusion takes place in FRP1. Bound water movement is generated by vapour pressure gradient exists that represent hygroscopic material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call